Eliminating Cr^{6+}, Cd, and other hazardous materials without compromising performance

Army Corrosion Summit, 2010

Keith Legg

ASETSDefense Technical Manager

Rowan Technology Group

Libertyville, IL

2/2012 Army Corrosion Summit
ASETSDefense (Advanced Surface Engineering Technologies for a Sustainable Defense) is an ESTCP initiative set up to assist DoD organizations and vendors to adopt alternatives to coatings that cause environmental and health problems

- Defined as info source in 2009 Cr$^{6+}$ memo
- Information, assistance, databases
- Workshops
DoD Vehicle Workshop
NASF Sur/Fin, Grand Rapids, MI, June 15-17, 2010

What new regulations are coming down the road?
What are the options to meet them?
What works and what does not, what does it take to make new processes work well?
What are the barriers to adopting new approaches successfully?
What new technologies are needed, and how can existing technologies be used more effectively?

For info: www.nasf.org and www.asetdefense.org

http://www.asetdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantechnology.com
Weapons programs and vendors are making changes to eliminate materials such as chromates, Cd plate, VOCs. But there are more ways to do it wrong than to do it right.

Perception is that giving up chromates etc gives up performance, but smart changes can often improve performance.

CHANGES THAT DON’T WORK OUT
Replacing Cd-plated bolts

- GTEs: most fasteners are now stainless steel
- For C-fiber composites Ti fasteners often used
- People sometimes forget that stainless steel and Ti fasteners are galvanically incompatible with Al frames and Al armor

http://www.asesdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantechnology.com
Direct-to-metal painting

- Now used on MRAPs and other vehicles to replace chromate wash
 - Some vehicles already rusting coming off the boat
 - More urgent to get vehicles in theater than to worry about initial corrosion
 - All non-chromate processes are very dependent on process conditions
 - Can be fixed on repaint

http://www.asetdefense.org 🌐 Teaming website: www.materialoptions.com 🌐 Keith Legg 847-680-9420 klegg@rowantechnology.com
Al pretreats

- USAF has qualified Prekote in place of chromate conversion of Al aircraft skins (TO 1-1-8)
- Boeing uses AC130/131 (Boegel)
- These are both paint adhesion promoters, not corrosion inhibitors
 - Cannot be used without paint system
In order to avoid use of chromates, etc., some people are combining materials that work well alone, but not in combination.

Example: Shipboard optical sight made of Al and coated with Ni
- Galvanic corrosion

Electrical connectors: Updated specs such as MIL-DTL-38999L allow Al, ZnNi or electroless Ni-PTFE coatings
- Care needed to avoid galvanic interactions
REGULATORY CLIMATE CHANGE
April 2009 DoD Memo on Cr⁶⁺

April 8 ‘09 USD-ATL issued memo restricting Cr⁶⁺ use, unless no cost-effective alternatives with satisfactory performance

Requires Program Executive Officer (PEO) and Corrosion Control and Prevention Executive (CCPE) to certify if no acceptable alternative

Effect will be to force adoption of Cr⁶⁺-free coatings and production methods

DFARS to be issued shortly

Info and database on Cr⁶⁺ alternatives available at www.asetsdefense.org
Intent of the Memo

- Eliminate use of chromate materials and processes in **new** weapons systems unless there are no satisfactory alternatives

 “The Defense Acquisition Regulation Council will prepare a clause for defense contracts prohibiting use of Cr\(^{6+}\) containing materials in all future procurements unless specifically approved by the Government.”

- Eliminate Cr\(^{6+}\) in **legacy** systems when they are modified or overhaul methods updated

 “Application of this policy to legacy systems will be limited to modifications where alternatives can be inserted in the system modification process and updated maintenance procedures.”

http://www.asetdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantecnology.com
PEO must take manufacturability and performance into account

- Cost-effectiveness
- Any change in performance
- Acceptable ESOH for alternative
- Long term availability
- Technical feasibility, MRL ≥ 8
 - Ready for at least low rate production
 - Stable production methods
 - QA/QC established
 - Adequate supply chain for limited production

Cr⁶⁺ use can continue if alternatives not acceptable
Defense Federal Acquisition Regulation Supplement (DFARS) Modification

- Defense Acquisition Regulation Council is drafting a Proposed Rule for the DFARS to be published in Federal Register

- Prohibition on Use of Cr\(^{6+}\)
 - DoD contracts cannot include specifications or standards requiring Cr\(^{6+}\)-containing materials or using Cr\(^{6+}\) processes

- Exceptions
 - Cr\(^{6+}\) can be used if authorized at PEO/flag level, in coordination with Corrosion Control and Prevention Executive
 - Does not apply to legacy systems, but alternatives to Cr\(^{6+}\) must be considered during system modifications, follow-on procurements, or updates of maintenance procedure

- DFARS clause would make Cr\(^{6+}\) concentrations in materials same as in RoHS
 - <0.1% by weight in any homogeneous material

See ASETSDefense Workshop, Denver, September 2009

http://www.asesdefense.org □ Teaming website: www.materialoptions.com ☏ Keith Legg 847-680-9420 klegg@rowantotechnology.com
RoHS
Reduction of Hazardous Substances
- RoHS is related to WEEE (Waste Electrical and Electronic Equipment)
- RoHS
 - Pb, Hg, Cr⁶⁺, PBB, PBDE < 0.1at%
 - Cd < 0.01at%
 - Military and aerospace regarded as exempt
 - But expectation of Cd plating exemption being eliminated for all commercial products

REACH
Registration, Evaluation, Authorisation and Restriction of Chemicals
- All chemicals must be registered with EChA
 - Even if used for years
- Evaluate toxicity of everything
 - Identify SVHCs (Substances of Very High Concern) that are CMRs (Carcinogenic, Mutagenic, Reprotoxic)
- Some SVHCs may be Restricted (perhaps effectively banned)
- You must have Authorization to use other SVHCs
Companies selling electrical equipment and vehicles in the EU must certify RoHS compliance

- With HR 2420 we will have the same in USA

For many organizations the biggest difficulty with meeting the RoHS requirements is with fasteners because they have no control over them

- What works depends on the environment in which they will be used

- No homogeneous layer can contain >0.1% Cr₆⁺ or >0.01% Cd by weight
- “Homogeneous layer” means any layer that cannot *in principle* be mechanically disjointed
- **Not** a % of whole item. Cd is a homogeneous layer and chromate another

http://www.setsdefense.org 🏛 Teaming website: www.materialoptions.com 📪 Keith Legg 847-680-9420 klegg@rowantech.com
RoHS – Restriction of Hazardous Substances

- Strictly covers electrical systems and vehicles, but these days that covers almost anything
- RoHS (and its companions WEEE and ELV) have led to elimination of Cd and Cr\(^{6+}\) from cars
- Forcing consideration of alternatives to Cd and Cr\(^{6+}\) for everything else (including aircraft)
- EU discussing extending to other equipment types

- DoD and aerospace are
- Sole users of Cd plating
- Primary remaining users of Cr\(^{6+}\) conversion coatings and primers

Hath not thy RoHS a thorn?

http://www.asesdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantechnology.com
Listing a substance as CMR Cat 1 or 2 makes it potentially subject to Restriction under REACH

New materials frequently added under “Adaptations to Technical Progress” (ATPs)

- 30th ATP, Aug 08, added 380 new substances, reclassified 516 and removed 3
 - Added Ni sulphate, dichloride, dinitrate, and carbonate (Ni plating chemicals)
 - Boric acid (boric-sulfuric acid anodizing, alt to chromic)
- 31st ATP, Jan 09 added 385 new substances, reclassified 83 and removed 4
 - 110 Ni compounds now included
- New materials added by read-across, without scientific data (e.g. Ni salts)
REACH and chromates – issue for sustainment in EU

REACH controls and restricts CMRs (carcinogenic, mutagenic, reprotoxic), defined in (Annex I of Directive 67/548/EEC, Packaging and Labeling of Dangerous Substances)

Sodium Dichromate was put forward as a “pre-candidate substance” for inclusion in REACH Annex XIV (Authorization) in June 08

- Decided not to prioritize for inclusion
- ECHA intends to bring it up again by 2011
- Listing has triggered downstream reporting requirements for Na dichromate
- EU looking to expand to more chromates

“...the most effective option is to group and prioritise relevant chromium VI compounds, including sodium dichromate, together” (ECHA Committee Recommendations). So it will be back, probably with all the other chromates (just as with Ni salts)
REACH impact – Impacts expected on platforms based in EU ~next 5-10 yrs

- Chromate conversion coatings, primers
 - Cr6+ essentially banned for all electronics by RoHS
 - Expect restriction/authorization all chromates under REACH
- Chromated primers – need quals
 - Aircraft/vehicle repaint
- Cd plating
 - Cd on vehicles already restricted
 - Next Cd for aircraft electronics
 - Later Cd for aircraft structures
- Ni becoming serious issue
 - Big concern for wear/corrosion

- Sodium dichromate is precursor in manufacture chromic acid
 - Cr plate more difficult in EU
 - HVOF alt available
- Beryllium copper – need alts
 - Aircraft, vehicle bushings – hydraulics, landing gear
- Al-Be alloys – need alts
 - Optical, targeting systems
- Beryllium oxide – long term?
 - Heat sinks, electrical insulators – avionics
 - Small but important use

http://www.asetdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantechology.com
REACH Impact on DoD

- Issue for sustainment in Europe
- Loss of local EU sources of chemicals and processes
- Uncertain whether Cd permitted for military vehicles
- Time scales for change << time scales for safe qual and adoption
- Defense Exemptions only in UK at present
 - Serious issue for ITAR (e.g. LO paint on parts made in EU)
USAGE AND REPLACEMENT – HOW MUCH DO WE KNOW?
Rule 1: There is no perfect drop-in

- Specs, approval requirements, test methods are all designed to accommodate existing processes, their strengths and weaknesses.

- The only materials that ever meet the performance of Cd or Cr⁶⁺ in every way are Cd or Cr⁶⁺.

- No matter how great an alternative is, there will always be one test where it is not as good.
 - Is that a critical requirement?
 - Can we live with it and still do better overall?
Rule 2: Alternatives always need more care

- Everything else has a higher Coefficient of Screwupability (COSa) than Cd and Cr\(^6\+)
- Alternatives to chromate conversion are more process-sensitive
- If you use chrome-free primer you had better do a good job with the pretreat
- Alternative electroplates and HVOF are more difficult than hard chrome plating
- Cd alternatives: AlumiPlate requires an enclosed line, while ZnNi electroplate must have the right alloy balance all over the component
Rule 3: Alternatives always cost more up-front

- Up-front cost is almost always higher
 - Partly this is because of the extremely low cost of Cr\(^{6+}\) conversion, Cd, hard chrome, etc.
 - Partly this is because alternatives are not as widely available or used in as high volume

- However, cost of ownership (LCC) frequently lower
 - Performance often (by no means always) better
 - Lower ESOH cost (rarely >10%)
 - Lower demil and disposal cost
 - Lower liability risk for use, spills, waste disposal
Are there alternatives that improve performance?

- Replace hard chrome with HVOF WC-CoCr on hydraulic actuators, most other applications
 - HVOF WC-CoCr typically far less wear and corrosion
 - WC-Co has worse corrosion than hard chrome – not recommended
- Replace Dow and HAE on Mg alloys with Tagnite and brush Tagnite
 - Much better corrosion, damage tolerance
- Replace Cd with AlumiPlate
 - Much better corrosion resistance
- Cr⁶⁺-free primer: 44GN-098 non-Cr primer less corrosion than chromated in F-35 testing
Cr6+ usage in DoD

Cr6+ (CrVI, hexavalent chrome, chromate) is our primary corrosion control material.

Cr6+-containing coatings
- Chromate conversion coatings
- Chromate sealers
- Chromated primers
- Chromate washes
- Chromated metallic-ceramics

Cr6+ processes, non-Cr6+ coatings
- Hard chrome plating
- Chromic acid anodizing
- Chromic acid passivation

Cr6+-containing coatings are a problem for sustainment (repaint, touch-up, corrosion control).
Cr6+ processes are primarily a problem for OEMs and depots.
Cr$^{6+}$-free coatings

<table>
<thead>
<tr>
<th>Material</th>
<th>Status of alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromate conversion coating</td>
<td>Trivalent chrome and non-Cr commercially available. Not yet as good as Cr$^{6+}$. Used on cars, Boeing 777, various military systems, USAF T.O. 1-1-8 Prekote; NAVAIR TCP authorizations</td>
</tr>
<tr>
<td>Chromate primers</td>
<td>Non-Cr primers commercially available. Used on F-35, AH-64 Apache. Performance good on Cr$^{6+}$ conversion coating. Moving toward total non-Cr$^{6+}$</td>
</tr>
<tr>
<td>Chromate finish system</td>
<td>Low temperature powder coat and UV curable finishes in validation to replace primer/topcoat for aircraft and vehicles. No Cr$^{6+}$, low VOC. In development</td>
</tr>
<tr>
<td>Chromate conversion of Mg</td>
<td>Tagnite now used on EFV gearbox, some sumps, gearboxes for AH-64, CH-53. Performance much better than Cr$^{6+}$ conversion and anodize. DoD use still very limited</td>
</tr>
<tr>
<td>Metallic-ceramics</td>
<td>Low-Cr and non-Cr available commercially. Performance uncertain</td>
</tr>
<tr>
<td>Chromate washes</td>
<td>Direct-to-metal used for MRAP. Poor performance</td>
</tr>
</tbody>
</table>
Cr6+-free processes now in use

<table>
<thead>
<tr>
<th>Material</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard chrome plating</td>
<td>HVOF on F-35 landing gear, all new commercial and military landing gear. Being implemented for overhaul at OO-ALC.</td>
</tr>
<tr>
<td>Chromic acid anodize</td>
<td>TFSAA approved by NAVAIR, BSAA by Boeing</td>
</tr>
<tr>
<td>Non-Cr primer</td>
<td>In production on F-35, AH-64 Apache (both Cr6+ pretreat)</td>
</tr>
</tbody>
</table>

http://www.asetdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowntechnology.com
High Velocity Oxy-Fuel (HVOF) process to replace hard chrome

- Most new landing gear programs now use HVOF WC-CoCr in place of hard chrome on inner cylinders, pins, actuators
 - Military and commercial aircraft
- Many hydraulics now use HVOF on actuator rods
 - E.g. Parker Aerospace
 - Caterpillar new and MRO
- Seal manufacturers specify surface finish and seal designs for HVOF
 - E.g. Greene, Tweed
- Standard industrial process
 - Several equipment makers, various powder suppliers, numerous spray houses worldwide

Method of choice for hard chrome replacement on aircraft
- Landing gear, actuators, flap tracks, other wear surfaces
- Commercial off-road vehicles
- OEM, MRO

http://www.asetdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantechonogy.com
HVOF standard on Caterpillar off-road hydraulics, shocks
Brad Beardsley ASETSDefense Workshop 2009

HVOF truck hydraulic production

100 ton Caterpillar truck

HVOF 3200 hrs salt mine

Chrome 682 hrs salt mine

Truck strut

http://www.asetsdefense.org ■ Teaming website: www.materialoptions.com ■ Keith Legg 847-680-9420 klegg@rowantechology.com
Tagnite to replace Dow 17 and HAE

- Widely used for gearboxes in commercial helicopters
- Authorized for military helicopters but only one implementation
- EFV transmission (RR Allison)
- Much better corrosion resistance and damage tolerance than Dow or HAE
- Repair by brush Tagnite

http://www.asesdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantechology.com
Cr³⁺ to replace chromate conversion

- NAVAIR TCP (Tri-Chrome Pretreat) now available from QPL list of commercial suppliers
 - Works well when used correctly
 - More sensitive than chromate to prep and process
 - Currently under test as chromate wash replacement

http://www.asetdefense.org 📋 Teaming website: www.materialoptions.com 🌐 Keith Legg 847-680-9420 klegg@rowantechology.com
PreKote and AC-130/131 to replace chromate conversion

- USAF TO 1-1-8 specifies PreKote as chromate alternative for aircraft painting
- Boeing now uses AC-130/131 to prevent rivet rash
- Both of these are adhesion promoters not corrosion inhibitors
 - Cannot be used without paint system
AlumiPlate to replace Cd plate

- Electroplated high purity Al coating
- Has to be done in oxygen-free line
 - JCAT testing shows AlumiPlate has much better corrosion resistance than Cd
 - Much better stress corrosion cracking performance
- Used on F-35, F-22, F-16, M119 Howitzer, AH-1 Super Cobra, and other systems

F-35 MLG torque arm
Upper Cd, lower AlumiPlate

http://www.asetdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowanotechnology.com
LHE ZnNi to replace LHE Cd and Ti-Cd plate

- Looks good in all Boeing testing
 - Available from Atotech and Dipsol of America
 - Not yet fully available commercially
 - ASETSDefense Workshop 09, Denver (Gaydos, Tran)
- LHE Zn14Ni currently in test at Hill AFB
 - Landing gear
- Both ZnNi and AlumiPlate require DFL
 - Usually polymer type
Al and Zn filled coatings to replace Cd on fasteners

- Ceramic or polymer base with Zn and/or Al flake fill
- Dip spin or spray
- Used on all commercial automotive fasteners
 - Several suppliers (Dorken, Delta, Magni, etc)
 - E.g. Magni 565 is modern version of Dorrltech, which tested as best TACOM testing in late 1990’s
 - Inorganic Zn-rich basecoat, organic Al-rich, friction-modified topcoat
- Not good for fine threads

http://www.asetdefense.org Teaming website: www.materialoptions.com
Powder coats and UV cure paints to replace high VOC paints

- Powder coats now formulated for low temperature cure
 - Good corrosion resistance and damage tolerance
- UV very rapid cure (seconds)
 - Saves standing around waiting for paint to dry
 - Reduces painting from days to hours
- Demonstrations of both methods ongoing

http://www.asesdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantecnology.com
Wire arc spray to reduce corrosion – vehicles, towers, etc

- Not a direct replacement for a toxic material, but reduces environmental impact and LCC by reducing corrosion and repaint frequency
- High up-front cost, lower cost of ownership
- Wire arc Zn15Al on GSE, Patrick AFB
- Wire arc Zn, NASA towers

http://www.asetdefense.org 🌐 Teaming website: www.materialoptions.com 📧 Keith Legg 847-680-9420 klegg@rowantechnology.com
Problems still outstanding

- Chromate-free paint system
 - Can be done, performance not yet up to chromate
 - Cr³⁺ treatments process-sensitive
 - First chrome-free finish B-777 flying for KLM 2009
- Chromate wash for armor
 - No alternative yet that works as well as Cr⁶⁺ but testing under way
- Rework coatings for Mg
 - Brush Tagnite can be used on Tagnite
- Cd alternatives still in discussion
 - ZnNi or AlumiPlate

http://www.asetdefense.org ■ Teaming website: www.materialoptions.com ☛ Keith Legg 847-680-9420 klegg@rowantechology.com
ASETSDEFENSE SOURCES OF INFORMATION

http://www.asetdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantechology.com
DoD Vehicle Workshop
NASF Sur/Fin, Grand Rapids, MI, June 15-17, 2010

DoD Vehicle Workshop

- What new regulations are coming down the road?
- What are the options to meet them?
- What works and what does not, what does it take to make new processes work well?
- What are the barriers to adopting new approaches successfully?
- What new technologies are needed, and how can existing technologies be used more effectively?

For info: www.nasf.org and www.asetstechnology.org

http://www.asetstechnology.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantechology.com
ASETSDefense
http://www.asetdefense.org

Quick information on alternatives
ASETSDefense workshop agendas, briefings, summaries (HCAT meetings coming soon)

Database
Team Work Spaces
Tools to be added

http://www.asetdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantechnology.com

Advanced Surface Engineering Technologies for Sustainable Defense

Advanced Surface Engineering Technologies for Sustainable Defense - is a Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) Environmental Security Technology Certification Program (ESTCP) initiative to facilitate the implementation of new, environmentally friendly, preventive engineering (coatings and surface treatments) by providing environmental safety and occupational health (ESOOT) personnel with the tools they need to reduce their exposure to hazardous materials. ASETSDefense provides defense organizations with access to information concerning the evaluation of existing and new environmentally safe treatment processes that utilize hexavalent chromium (chromate, chrome acid), coatings that contain volatile organic compounds (VOC), and other environmentally safe alternatives.

Database
Team Work Spaces
Tools to be added
Chromate Conversion Alternatives

Current Usage
Chromate conversion coatings and chromated sealers are used to create a self-healing conversion coating on Al and Mg alloys that is resistant to corrosion. They are also used for sealing electroplated and anodized coatings. These treatments are typically used prior to painting and finishing, since they generally improve adhesion of paints and sealants.

- Aircraft skins
- Air frames for aircraft and vehicles
- Mg gearboxes
- Corrosion-resistant coatings (Cd, Al, ZnNi, etc.)
- Anodize sealing
- Fasteners and electrical connectors (Zn or Cd plated)
- Wash primer for steels, armor

<table>
<thead>
<tr>
<th>Typical Applications</th>
<th>Typical Chromate Conversion Coatings</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aircraft skins</td>
<td>1. Conversion and sealing coatings for Al (e.g., Alodine, Indite, etc.)</td>
<td>MIL-DTL-81706</td>
</tr>
<tr>
<td>2. Air frames for aircraft and vehicles</td>
<td>2. Conversion and sealing coatings for Mg (e.g., Dow 7, 17, 19, HAE anodize)</td>
<td>MIL-C-8541</td>
</tr>
<tr>
<td>3. Mg gearboxes</td>
<td></td>
<td>MIL-M-45202</td>
</tr>
<tr>
<td>4. Corrosion-resistant coatings (Cd, Al, ZnNi, etc.)</td>
<td></td>
<td>AMS 3171</td>
</tr>
<tr>
<td>5. Anodize sealing</td>
<td></td>
<td>TO 1-1-8</td>
</tr>
<tr>
<td>6. Fasteners and electrical connectors (Zn or Cd plated)</td>
<td></td>
<td>MIL-A-8625</td>
</tr>
<tr>
<td>7. Wash primer for steels, armor</td>
<td></td>
<td>MIL-C-2171</td>
</tr>
</tbody>
</table>

ESOH Issues
Cr⁶⁺ (CrVI, hexavalent chromium) is a known carcinogen that is strongly regulated under

- EPA Clean Air Act rules
- OSHA Occupational Exposure to Hexavalent Chromium (Cr⁶⁺ PEL is currently 5µg/m³)
- European rules (RoHS, WEEE, ELV)

Exposure
Personnel may be exposed during manufacture, depot overhaul, repaint, and operational level touch-up and repair.
http://db.asetdefense.org

SURFACE ENGINEERING DATABASE
Designed to answer question “What alternative to hard chrome (etc) is available (authorized, implemented, spec’d) for my type of system and application?”

http://www.asetdefense.org Teaming website: www.materialoptions.com Keith Legg 847-680-9420 klegg@rowantecnology.com